C++ programme to find the sum of the series 1 + 1/2^2 + 1/3^3 + …..+ 1/n^n.Arithmetic progression, then it is said to be in Harmonic Progression.
C++ Program To Find Sum of Series 1+1/2^2+1/3^3+…..+1/n^n
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
double sum = 0, a;
int n, i;
cout << "\n\n Find the sum of the series 1 + 1/2^2 + 1/3^3 +.....+ 1/n^n:\n";
cout << "----------------------------------------------------------------\n";
cout << " Input the value for nth term: ";
cin >> n;
for (i = 1; i <= n; ++i)
{
a = 1 / pow(i, i);
cout << "1/" << i << "^" << i << " = " << a << endl;
sum += a;
}
cout << " The sum of the above series is: " << sum << endl;
}
Output Of Program
Find the sum of the series 1 + 1/2^2 + 1/3^3 +…..+ 1/n^n:
Input the value for nth term: 5
1/1^1 = 1
1/2^2 = 0.25
1/3^3 = 0.037037
1/4^4 = 0.00390625
1/5^5 = 0.00032
The sum of the above series is: 1.29126